产品的数据统计分析及精细化运营
史蒂芬说:在对产品的数据分析中,需要对统计分析哪些数据?使用什么工具?以及如何通过应用统计进行分析,从而做到精细化运营?
以下是总结自知乎的高投票率回答 一、 需要统计分析哪些数据? 1、不同的网站因为商业目的不同,KPI会有所侧重 如果你是内容型网站,跳出率肯定是不错的KPI;如果是视频网站,在线时长肯定是更好的KPI;如果是购物网站,电商的转化率会是更好的KPI; 同时,新客户和老客户的比例变化也是个不错的KPI,体现你网站客户的忠诚度或是获取新用户的能力。 2、最终体现你价值的,还需要定制化KPI 但是如果你是个社交网站,什么样的指标合适,如果你是个拍卖网站,什么样的指标合适?这就涉及到一些定制的转化率指标。 顺便提及:网站中的每个行为最好都埋点,以便分析 3、在不同的阶段,指标都不一样 网站刚上线,肯定是流量,PV,跳出率;网站运营中期,肯定是新注册,转化率,跳出率,电商网站还会考虑客单价,重复购买率;网站某次市场活动,肯定是新访客比例,跳出率,新访客的注册转化率,目标达到率等。 二、使用什么统计分析工具? 选用哪个工具与公司现状和公司需求有很大关系。首先,确定在网站数据分析这里公司技术实力如何,部署与收集分析数据能力怎样;其次,明确公司想要获得的是纯粹报告还是需要分析;最后,是否只需要了解点击相关数据即可。 不同的实现目标,解决方案的层次会有所不同。显然简单的日志分析器是解决不了问题的,建议采用木桶原则划分工具选择(以下为书摘): 木桶1 :Omniture, Webtrends 木桶2 :ClickTracks,Unica,XiTi,Nedstat 木桶3 :Google Analytics,百度统计 木桶1特点-大而全,部署和使用有一定难度; 木桶2特点-后验分析的佼佼者,管理离线营销和跨渠道营销效果好; 木桶3特点-自带分析功能,可自定义报表,并能与搜索营销结合。 从每个木桶中至少选择1款工具做网站分析,试运行1-2个月进行阶段性评估,可以从这几个角度尝试评估:易用性,功能性,技术,响应,【成本】,了解抽样算法,搜索分析,小白上手难度(这影响到该系统在公司内普及的程度),校验数据(数据质量肯定不完美,但可用。看偏离多少,相关人员如何解答这些差异),测试反馈和服务支持,计算总成本。 国外:1、GA ; 2、Clicky; 3、W3Counter; 4、Woopra; 5、W3Perl ; 6、Piwik; 7、TraceWatch; 8、Snoop;9、goingup; 10、JAWStats;11、Crazyegg; 国内: 1、百度统计;2、CNZZ;3、国双统计; 4、51la;5、量子统计; 6、小艾统计;7、科捷统计;8、好耶iDigger 9、gostats。 外部分析工具:1、Alexa ; 2、IUT; 3、adplanner; 4、quantcast;
(小编注:适用于App)
国内:友盟,机锋统计,TalkingData,百度移动统计,CNZZ移动数据平台,imofan 国外:Flurry,google analytics mobile,Mixpanel 开源:cobub 三、如何通过统计结果做到精细化运营? 1、精细化运营的目标 1)产品是什么类型的APP?是否需要过多的运营? 比如说你的产品只是个工具,那恐怕谈不上过多的精细化运营,一般做好常规的用户行为分析、再配合用户定性研究,用于指导产品的设计即可;如果是内容型产品,或者功能和内容兼具的产品,那确实需要考虑。 2)设计统计框架 统计的目标要弄清楚,拿到数据之后用来做什么?指导功能改进,还是版面调整?再或者是作为用户对内容质量评判的指标? 假设用户在你的app上会频繁进行交互和使用功能,同时还会浏览或者产生内容,那么需要在产品设计的同时,把你的统计框架设计好。 2、简要的操作流程 1)数据采集 首先列出你需要的数据项,接着评估哪部分是需要APP上报的,哪部分是后台可以统计的,然后分别在前后台加上。一般来讲,APP上报采集的数据,在发布前一定要经过谨慎的校验和测试,因为一旦版本发布出去而数据采集出了问题,不仅之前的功夫都白做了,还会带来一大堆脏数据,同时还有可能降低客户端的运行效率,得不偿失。 2)数据整理 数据采集完之后,需要将各种原始数据加工成为产品经理需要的直观的可看数据,这里需要做一些基本的数据逻辑关联和展示,就不赘述了。 3)数据分析 按照一开始设计的统计框架,你可以很清楚的看到自己需要的数据了。比如用户行为:哪些功能使用得被人均使用得最多,哪些按钮被频繁点击,哪些在显著位置却未达到预期使用效果的功能,等等;比如内容分析:哪篇文章被查阅最多,哪些内容被评论或者赞得最多,等等。 当然以上只是基础得不能再基础的分析,再深入一点的,例如你拿到这些数据,可以分析使用A功能的用户同时还喜欢B功能,二者关联性较强,是否可以在前端设计时更多的考虑整合,或者界面上的调整;比如分析点击流,大部分用户访问或使用APP的路径是怎么样的,是不是把核心功能藏得太深了?再比如可以分析不同用户属性,比如男性用户和女性用户,他们在用户行为上是否有明显差异?等等。 不同产品的数据分析方式和模型差距非常大,没法一下子就说清楚。所以以上更多的是举例。 3、一些需要注意的原则 1)数据本身是客观的,但被解读出来的数据一定是主观的,同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析(比如已经有了假设,再用数据去论证); 2)APP采集数据,一定是优先级比较低的事情,不能因为数据的采集而影响产品的性能和用户体验,更不能采集用户的隐私数据(虽然国内很多APP并没有这么做); 3)数据不是万能的,还是要相信自己的判断。
以上就是本篇文章【产品的数据统计分析及精细化运营】的全部内容了,欢迎阅览 ! 文章地址:http://zleialh.xhstdz.com/news/3326.html
栏目首页
相关文章
动态
同类文章
热门文章
网站地图
返回首页 物流园资讯移动站 http://zleialh.xhstdz.com/mobile/ , 查看更多