一、简介
词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中地高频词:!
图1 词云图示例
在Python中有很多可视化框架可以用来制作词云图,如pyecharts,但这些框架并不是专门用于制作词云图的,因此并不支持更加个性化的制图需求,要想创作出更加美观个性的词云图,需要用到一些专门绘制词云图的第三方模块,本文就将针对其中较为优秀易用的wordcloud以及stylecloud的用法进行介绍和举例说明。
二、利用wordcloud绘制词云图
wordcloud是Python中制作词云图比较经典的一个模块,赋予用户高度的自由度来创作词云图:
图2 wordcloud制作词云图示例
2.1 从一个简单的例子开始
这里我们使用到来自wordcloud官方文档中的constitution.txt来作为可视化的数据素材:
图3 constitution.txt
首先我们读入数据并将数据清洗成空格分隔的长字符串:
importre
withopen(‘constitution.txt’)asc:
‘’’抽取文本中的英文部分并小写化,并将空格作为分隔拼接为长字符串’’’
text =‘ ‘.join([word.group().lower()forwordinre.finditer(‘[a-zA-Z]+’, c.read())])
‘’’查看前100个字符’’’
text[:500]
图4 清洗后的片段文本
接着使用wordcloud中用于生成词云图的类WordCloud配合matplotlib,在默认参数设置下生成一张简单的词云图:
fromwordcloudimportWordCloud
importmatplotlib.pyplotasplt
%matplotlib inline
‘’’从文本中生成词云图’’’
wordcloud = WordCloud().generate(text)
plt.figure(figsize=[12,10])
plt.imshow(wordcloud)
plt.axis(‘off’)
plt.show()
生成的词云图:
图5 默认参数下的词云图
毕竟是在默认参数下生成的词云图,既丑陋又模糊,为了绘制好看的词云图,接下来我们来对wordcloud绘制词云图的细节内容进行介绍,并不断地对图5进行升级改造。
2.2 WordCloud
作为wordcloud绘制词云图最核心的类,WordCloud的主要参数及说明如下:
fontpath:字符型,用于传入本地特定字体文件的路径(ttf或otf文件)从而影响词云图的字体族
width:int型,用于控制词云图画布宽度,默认为400
height:int型,用于控制词云图画布高度,默认为200
prefer_horizontal:float型,控制所有水平显示的文字相对于竖直显示文字的比例,越小则词云图中竖直显示的文字越多
mask:传入蒙版图像矩阵,使得词云的分布与传入的蒙版图像一致
contour:float型,当mask不为None时,contour参数决定了蒙版图像轮廓线的显示宽度,默认为0即不显示轮廓线
contour_color:设置蒙版轮廓线的颜色,默认为’black’
scale:当画布长宽固定时,按照比例进行放大画布,如scale设置为1.5,则长和宽都是原来画布的1.5倍